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Theoretische Physik, Universitat Miinchen, Theresienstrasse 37, D-8000 Miinchen, 
Germany 

Received 20 June 1983 

Abstract. We consider a system with a single locally-conserved field (= density) in a slab 
geometry with different densities maintained at the two surfaces of the slab. On the basis 
of fluctuating hydrodynamics we show that the static density-density correlations are long 
ranged and decay as - 1 / I ~ - - y l ~ - ~  for dimension d s 3  over distances small compared to 
the size of the slab. This effect vanishes to first order in the density difference. As a 
particle model we investigate a stochastic lattice gas with Kawasaki dynamics. We establish 
the connection to fluctuating hydrodynamics. In the case of hard core interaction only we 
prove the validity of fluctuating hydrodynamics and obtain, presumably model dependent, 
corrections. 

1. Introduction 

As is well known, a fluid in thermal equilibrium has exponentially decaying correlations 
of a range comparable to the one of the intermolecular potential. Only as the phase 
boundary is approached the correlation length may diverge. What kind of correlations 
should one expect then for a fluid in a non-equilibrium steady state imposed by 
appropriate boundary conditions? 

This problem has attracted considerable attention recently (Ronis et a1 1979, 1980, 
Machta et a1 1979, Kirkpatrick et a1 1979, 1980, 1982, Kirkpatrick and Cohen 1980, 
Cohen 1980,1981, van der Zwan and Mazur 1980, van der Zwan eta1 1981, Tremblay 
et a1 1980, 1981, Grabert 1981, Ronis and Putterman 1980, Machta and Oppenheim 
1982), especially because some of the theoretically expected effects are now also 
accessible experimentally (Beysens et a1 1 980). When investigating this problem 
microscopically, i.e. on the level of an interacting particle system, a major difficulty is 
that the steady state is only defined as the stationary solution of a certain linear equation 
wih appropriate boundary conditions. From this information, properties of the steady 
state are not easily extracted. Therefore most theoretical treatments circumvent a 
microscopic theory and immediately use fluctuating hydrodynamics together with the 
so-called extended local equilibrium assumption. For dilute gases kinetic theory can 
also be used (Kirkpatrick et a1 1982). In this particular case the link to the underlying 
Newtonian dynamics of particles can be made precise. It has been shown, under the 
restriction to short times, that the equation governing the time dependent fluctuations 
in the one-particle space becomes exact in the Boltzmann-Grad limit (van Beijeren 
et a1 1979, Spohn 1981). 

@ 1983 The Institute of Physics 4275 



4276 H Spohn 

In this article I want to study the problem of nonequilibrium steady states for 
stochastic lattice gases. In these models one considers particles on a lattice which 
randomly jump to neighbouring sites at random times. Typically, one assumes a hard 
core exclusion of at most one particle per lattice site, and a jump rate depending on 
the neighbouring configuration. The number of particles is conserved in the course of 
time. The condition of detailed balance fixes the temperature throughout the system. 
Without boundary conditions the Gibbs canonical distribution is time invariant. 

Compared to fluids, modelled as many classical particles, stochastic lattice gases 
are simpler in two essential ways. ( i )  The approach to equilibrium and the stochasticity 
is built into the model directly. (ii) Stochastic lattice gases have only one locally 
conserved field, namely the density. Therefore the hydrodynamic description reduces 
to a nonlinear diffusion equation. On the other hand, stochastic lattice gases obviously 
have one property in common with real fluids in that both form an interacting many 
particle system. As will be discussed in detail, only because of this interaction non- 
equilibrium steady states for stochastic lattice gases have long range correlations 
qualitatively of the same nature as the ones for fluids. 

Since for stochastic lattice gases only the density is locally conserved, the simplest 
nonequilibrium steady state is maintained in a BCnard-Rayleigh type experiment. We 
assume a slab geometry. At the left and right boundary of the slab particles are 
extracted from and inserted into the system with certain rates. This fixes the boundary 
densities p+ and p-.  After some transient period the system establishes a steady state. 
If p+ = p- =p,  then the steady state is the grand canonical Gibbs state with fugacity 
z ( p )  depending on the boundary density and a temperature determined through the 
dynamics. In this case the qualitative structure of the state is well understood. We 
focus our attention here on the case p +  f p- .  

The set-up described here has been investigated numerically on a 16 X 16 X 16 
lattice with nearest-neighbour interaction at various densities and temperatures (Murch 
1980). Only the steady state current for small density gradient was measured with 
the aim to determine the bulk diffusion coefficient. We are not aware of such an 
experiment on a real system despite the fact that a number of materials have been 
successfully described in terms of stochastic lattice gases, as e.g. binary mixtures, 
hydrogen in metals and superionic conductors. 

We will first construct the purely macroscopic theory of fluctuating hydrodynamics 
for stochastic lattice gases, i.e. for a single locally conserved field. We find static 
density-density correlations which decay as -[( p+ - p - ) / 2 L I 2 / 1 x  - for dimension 
d 2 3 over distances small compared to the width L of the slab. We also study the 
influence of boundary conditions which although essential are hardly mentioned in 
other papers. The effect is second order in the density gradient. For fluids one finds 
such a slow decay for some correlations already to first order in the, in this case, 
temperature gradient because of the presence of convective terms. To my knowledge 
fluctuating hydrodynamics with a single conserved field has been investigated in 
Tremblay et a1 (1981), Medina-Noyola and Keizer (1981). In Tremblay et a1 (1981) 
only the first-order deviations from the uniform density are considered whereas in 
Medina-Noyola and Keizer (1981) a very particular density dependence of the transport 
coefficient is assumed. In both cases the physically interesting effect does not show up. 

We then indicate how the macroscopic theory can be obtained from the underlying 
stochastic dynamics, at least in principle. We have no idea how to carry out this 
programme rigorously, in general. Fortunately there is one particular but non-degen- 
erate case for which the derivation of fluctuating hydrodynamics can be proved. This 
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case corresponds to infinite temperature with hard core exclusion only. The equilibrium 
theory of this model is completely trivial. The non-equilibrium steady state shows, 
however, a surprisingly rich structure which has its origin solely in the fact that two 
particles are not allowed to occupy the same lattice site simultaneously. 

In this simple exclusion model we will also investigate corrections to fluctuating 
hydrodynamics. Very likely these corrections are model dependent, but still they give 
us an idea of how well the macroscopic theory describes the microscopic system. 

2. Stochastic lattice gases 

We assume that particles jump on the ddimensional lattice Zd.  There is at most one 
particle per lattice site. (Notice that thereby the hard core exclusion is built into the 
model. As with other assumptions below one could be less restrictive.) The occupation 
variables are denoted by v,, x E H d .  7, = 1 corresponds to site x occupied and 7, = 0 
to site x empty. 7 = { ~ , I x E ~ ~ }  denotes a particle configuration. 

For simplicity we assume the usual nearest-neighbour interaction energy 

be the rate that in the configuration 7 the occupations at site x and y are interchanged. 
Therefore c(x, y, 7) = c ( y ,  x ,  7). If 7, = 1 and =0,  then c(x, y,  7) is the rate for 
the particle at x to jump to y in the configuration 7. If 7, = vY, then we may set 
c(x, y, 7) = 0. We make the following assumptions on the rates c(x, y, 7): 

(i) c(x, y ,  7) is invariant under translations, i.e. c ( x + a ,  y + a ,  1 , ~ )  = c(x, y ,  7) for 
all a E Zd,  with 7, the shift by a ,  and invariant under rotations. 

(ii) c(x, y, 7) = 0 whenever Ix - y (  > 1 .  This means that only nearest-neighbour 
jumps are allowed. To avoid degeneracies we also assume c(x, y, 7) > 0 whenever 

(iii) c(x, y, 7) is of finite range, i.e. it depends only on a finite neighbourhood of 

(iv) c(x, y ,  7) satisfies the condition of detailed balance with respect to the energy 

(2.3) 
Here v X y  denotes the configuration 7 with occupations at sites x and y interchanged, 

I x - y ( = l .  

x and y .  

( 2 . 1 ) ,  i.e. 
c(x, Y ,  7) = c(x, y ,  T* ’ )  ~ ~ P [ - P ( H ( ~ ” ’ ) - H ( ~ ) ) I .  

for z = y 
for z = x 
for z # x ,  y .  

(v) We assume p to be sufficiently small such that there is only one phase at any 
density O s p s l .  

If p allows the coexistence of two phases, then for d 3 3  already in thermal 
equilibrium the system may form a stable interface. Therefore, also the steady state 
will have an interface provided p+ and p- are in the appropriate range. The average 
location of this interface should be determined by the balance of mass flow through 
the interface. 
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With these assumptions the generator of the dynamics is given by 

acting on functions f depending only on a finite number of occupation variables. L 
determines the unique Markov semigroup 

T, = eLr, tzO (2.6) 

on the space of bounded and continuous functions on {?, l}'d (Liggett 1977). Let xa 
be the characteristic function of a Bore1 set A c {0, l}" . Then 

is the probability that, given that the system is in the configuration 7 at t = 0, the 
system is in the set A of configurations at time t. Thus the kernel of eLr is the transition 
probability and, since our dynamics is Markovian, everything else is determined in 
terms of this transition probability. 

Let ( ), denote the thermal equilibrium state at density p, 0 s p s 1 ,  and inverse 
temperature P for the energy (2.1). Then because of detailed balance T, and L are 
self-adjoint, 

in particular ( ), is time invariant, i.e. 

(Trf), = ( f ) p .  (2.9) 
The temporal evolution of the density, including its fluctuations, on a macroscopic 

(I)  The compressibility x( p )  defined by 
level is determined by two microscopic quantities only. 

(2.1.0) 

This is a purely static quantity independent of the specific jump rates. 
(11) The bulk diffusion coefficient D ( p ) .  D ( p )  depends on the dynamics. In general 

D ( p )  is a d X d matrix. Because of the assumed isotropy it is a scalar, here. D ( p )  is 
microscopically defined by the Green-Kubo formula as the space-time integral over 
the current-current correlation function. The current-current correlation function has 
a contribution proportional to a(?) and a regular part. Explicitly 

Here e is a unit vector, e E Zd with le1 = 1.  The first term is the average jump rate 
through the bond (0, e ) .  j(x, x + e )  is the current function for the bond (x, x + e )  
defined by 

i(x, x+e)(r l )  = c ( x , x + ~ ,  T ) ( T , - T ~ + , ) .  (2.12) 
Since eLr is self-adjoint, Xx(  j(x, x + e )  eL"'j(O, e ) ) ,  2 0. One can also show that this 

(2.13) 

function is integrable in t (Spohn 1982). One has the trivial bounds 

0 s  D(P)S  (1/2X(P))(C(O, e ) ( % -  T J 2 ) , .  
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At present one cannot exclude rigorously that the negative and positive contribution 
to D ( p )  cancel each other and hence D ( p )  = 0. Physically one certainly expects 
D(p) > 0 away from the critical point. It is believed that as ( p ,  p )  tends to the critical 
point D( p )  tends to zero as x(  p) - '  (Hohenberg and Halperin 1977). 

We are now in a position to model the physical situation described in the introduc- 
tion. We consider the slab AN c Ed. It extends from -N to N in the one-direction 
and is infinitely extended otherwise. At the left and right boundary of AN we want 
to allow for creation and destruction of particles. To do so we introduce the boundary 
rates 

C + ( - d X ,  7) 3 0 (2.14) 

of interchanging 7, and 1 - 7, when the configuration is 7. Again we assume translation 
invariance, finite range, and detailed balance in the form 

c+( - ) (x ,  7) = c + ( - ) ( x ,  $1 exp[-P(H(T") -H(q))l exp[Pp+(-)tl-217x)1. (2.15) 

Here vX denotes the configuration 7 with 7, replaced by ( 1  - 7,). (2.15) fixes the 
chemical potential p+(p-)  at the right (left) boundary which is related to the boundary 
density p+(p- )  in the usual way. The generator of the dynamics including boundary 
conditions is then given by 

(2.16) 

The steady state ( )N is defined by 

for all strictly local functions f .  The steady state depends on N and the boundary 
densities p+ and p-.  If the height of the slab is finite, we have a Markov chain with 
finite state space and standard results guarantee uniqueness of the steady state. For 
the infinite slab one certainly expects uniqueness at high temperatures, but except for 
particular cases, we do not know of a proof. 

Physically of major interest are the average density 

( 7 x ) N  (2.18) 

and the truncated pair-correlation function 

(We use here the time invariance of ( )N.) The truncated pair correlation function 
describes time-dependent fluctuations in the density and its space-time Fourier trans- 
form is directly measured in scattering experiments. 
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3. Macroscopic theorylfluctuating hydrodynamics 

On a macroscopic scale the density is governed by the nonlinear diffusion equation 

M q ,  t ) /d t  = (a /aq)D(p(q ,  t ) ) (ap(q,  t ) / d q )  (3.1) 

with D( p )  given by (2.11). There is no drift, since in equilibrium the current vanishes. 
We consider the slab A L ,  -L S q1 S L, -a< q2, . . . , q d  < a. The steady state density 
p,  is the solution of 

(a/aq)D( ps(q) ) (aps(q ) /aq )  = 0 (3.2) 

p s ( - L ,  q 2 , .  . . 7 q d )  = p-7 (3.3) 

with boundary conditions 

P s ( L ,  q 2 ,  * * . 3 q d )  = p+. 

By symmetry the solution depends only on q l .  If p - < p + ,  the steady-state density 
increases monotonically. If D ( p )  is small, the variation in p s ( q )  is large. (3.2) together 
with (3.3) constitutes the macroscopic approximation to (2.18). 

To study the fluctuations let us briefly recall the situation for global equilibrium. 
We denote by [ (q ,  t )  the deviation in the density from its uniform average value p at 
the macroscopic space-time point (4, t ) .  (These are random variables.) ((4, t )  has 
mean zero and we assume that ( ( q ,  t )  is Gaussian. The exponentially correlated static 
fluctuations look, on a macroscopic scale, &correlated with weight x( p ) .  Therefore 

(5 (q ,  f )5 (4 ’ ,  t ) )  = (5(47 O)t (q ‘ ,  0)) = x( p)S(q - 4 1 ,  (3.4) 

where p is the equilibrium density. Since t ( q ,  t )  is assumed to be small, it changes in 
time deterministically according to the linearised macroscopic equation. In addition 
t ( q ,  t )  is driven by microscopic fluctuations, i.e. by a random force which we write as 
the divergence of a random current to ensure the conservation of mass. Therefore we 
postulate the evolution equation 

In order to have a Gaussian t ( q ,  t ) ,  j ( q ,  t )  has to be Gaussian of mean zero. Since 
the stationary measure is already given through (3.4), the covariance of the random 
current is uniquely determined to be 

The current is white noise with strength Dx(p) .  Physically DX just equals the electrical 
conductivity in linear response. 

To generalise to a non-equilibrium steady state we still postulate an evolution 
equation of the form (3.5). The deterministic part is now the macroscopic equation 
linearised around the steady state. This yields 

The fluctuating current j ( q ,  t )  still has to be Gaussian of mean zero. But we have now 
no additional information available to determine its covariance. To make a reasonable 
guess we recall that the derivation of the macroscopic equation is based on the 
assumption that the system is locally, in space-time, in equilibrium. Once we observe 
that in (3.6) the covariance of the fluctuating current is determined locally, it is natural 
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to assume that the covariance of the fluctuating current in (3.7) is still given by 

( j m ( 4 ,  t ) j n ( q ‘ ,  t ’ ) ) =  2 6 m , 6 ( t - t f ) 6 ( q - 4 ’ ) D ~ ( p s ( 4 ) ) .  (3.8) 

The strength at (4, t )  is determined by the local density at (4, t ) ,  i.e. by the steady 
state density p,(q), in the same way as in thermal equilibrium. Finally, we have to 
add to (3.7) some boundary conditions. Since at the boundary the density is fixed, 
the density deviations are zero and therefore 

(3.9) 

The stationary solution of (3.7) together with (3.8) and (3.9) constitute the macroscopic 
approximation to (2.19). 

The Gaussian process defined by (3.7), (3.8) and (3.9) has a unique stationary 
measure with mean zero and covariance 

Cs(q, 9‘)  = ( ‘ f ( 4 ,  t)5(s’, [I). (3.10) 

‘ f ( -L,  q 2 ,  * * . 9 q d ,  t )  = o = ‘ f ( L , q 2 ,  * 9 q d ,  t ) .  

We want to divide out the local equilibrium contribution and write 

c s ( q ?  4’) = S ( q - 4 ’ ) X ( P s ( 4 ) ) + C N E ( q ,  4’)-  (3.11) 

A straightforward computation yields then 

Here 

( A * f ) ( q )  = D ( P s ( q ) ) ( J / a q )  ’ ( a / a q ) f ( q )  (3.13) 

with zero (Dirichlet) boundary conditions. eA*‘(q, 4’) dq‘ is the transition probability 
for the diffusion process with generator A* and absorption at the boundary of the 
slab. Note that if we expand in the difference of the boundary densities, p + - p - ,  then 
CN, - ( p+ - p-)’ and will pass unobserved to first order. In Medina-Noyola and Keizer 
(1981) Ox = 1 is assumed and consequently C,, vanishes. 

The time-dependent fluctuations are simply obtained as 

( ( ( 4 ,  t ) 5 ( q ’ ,  0)) = j- dq” e A r h  q”)Cs(q”, q’) (3.14) 

for t z 0 .  
To understand how CNE depends on q and q’ it is useful to consider the special 

case D =  1, x ( p )  = p ( l - p ) .  This case will reappear later on when we discuss the 
simple exclusion model with exchange rates c(x, y ,  7) = 1 for Ix - yI = 1. Since in this 
case D does not depend on p, the steady state solution is 

(3.15) 

(3.17) 

where A - ’ ( q , q ’ )  is the kernel of the inverse of the Laplacian with zero boundary 
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conditions (Green function). Notice that the non-equilibrium part is negatively corre- 
lated in this case. The behaviour of A-’(q, 4’) is well understood: In three dimensions, 
if q and q‘  are separated by a distance small compared to L, then the influence of the 
boundaries is negligible and 

A-’(q, 4’) - 4 ~ / l q  - 4‘1. (3.18) 

On the other hand if Iq-q’l>> L, then the absorption at the boundary dominates and 

A-’(q, 4’) =exp(-/q-q’1/2L). (3.19) 

The stationary density-density covariance has a S-correlated local equilibrium contribu- 
tion and a part which is negatively correlated and decays slowly as l / lq[.  This part 
has the strength [(p+-p-)/2LI2. The long range part of the covariance is eventually 
cut off at distances of the order of the width of the slab. 

The time-dependent fluctuations can be computed from (3.14) and are given by 

M 4 ,  t ) 5 ( 4 ’ ,  0)) = eJf(q, 4 ’ ) X ( P S ( S ’ ) )  + [ ( P + -  P-)/2LI2 eAfA-’(4, 4 ’ ) .  (3.20) 

Physically one typically measures the structure factor by means of a scattering 
experiment. For a translation invariant system this is simply the space-time Fourier 
transform of (3.20). For a system not invariant under translations, as the one here, 
one has to specify more precisely the experimental set-up. We refer to Kirkpatrick 
et ul (1982) for a detailed discussion of this point. If one follows the prescription 
there and assumes that the scattering region is in the middle of the slab at q1 = 0, then 
a rather good approximation to A with zero boundary conditions is the free Laplacian 
with mass 7r2/4L2. Then within that approximation 

(3.21) 

The frequency distribution is still Lorentzian, but the amplitude for small k is strongly 
suppressed because of the imposed density gradient. 

Returning to the general case (3.12) one expects results qualitatively comparable 
to the special case D ( p ) =  1, x ( p ) = p ( l - p ) .  This is certainly the case if - U S  

(a2/dq:)(Dx)(p,(41))  s -b with strictly positive constants a, b. If ( a 2 / d q : ) ( D x ) ( p s ( q l ) )  
takes on both signs, which does not seem to be excluded in general, then cancellations 
might wash out the effect found here. 

4. The hydrodynamic limit/connection between microscopic and macroscopic 
theory 

We will first consider only static, equal time functionals. 
We introduce the scaling parameter E ,  E > 0, E + 0. It is convenient to think of E 

as the lattice spacing. We approximate then the continuum slab AL by a discrete slab 
 EA^^., with N ( E )  = [E-IL] and lattice spacing E. [ U ]  denotes here the integer part of 
U.  

One expects that for every point q E A! 

Fz ( 7 7 [ F - l q l ) N ( e )  = PS(4 ) .  (4.1) 
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The average density approximates the steady state solution. We take q to be in the 
interior of A L  to avoid the boundary layer. If one spatially averages over many lattice 
sites, one expects to have small dezsity fluctuations only. Let A, be a hypercube of 
side-length ~ / J E  lattice sites. ( ~ / J E  is only a convention here. One wants the number 
(A,I of lattice sites in A, to tend to infinity as E + 0 and EA, ,  i.e. A, on the lattice with 
lattice spacing E ,  to shrink to zero. Therefore with 0 < a < 1 would do.) Then 
one expects that for every q E A i  

in probability with respect to the sequence of stationary measures ( - ) N ( E ) .  Technically 
it is often more convenient instead of (4.2) to average spatially over a smooth test 
function. Let f be a test function defined on A L .  f is assumed to vanish rapidly at 
infinity and to be zero some finite distance away from the boundary. Then one expects 
that 

r 
(4.3) 

in probability with respect to the stationary measure ( . ) N ( E , .  

normal character, 
The fluctuations in the density field are defined in the usual way, anticipating their 

Conjecture 1. Let ( ) N ( E )  be the steady state with N ( E )  = [ E - ~ L ] .  Then 

exists. ( ( f )  is a Gaussian random field with mean zero and covariance 

(5(f)5(g)) = j- dq dq’f(q)g(q’)Cs(q, 41, 

where C,(q, q ‘ )  is given by (3 .11 )  and (3.12) 

(4.6) 

Since the non-equilibrium part of the steady state covariance is smooth one also 
expects that for q, q’ E A t ,  q # q ’ ,  

lim E + O  E -d (( 77 [ E  - i s ]  r ] [ ,  ~ L q , l  )N( - ( v - I q ]  )N( E v[. - i q , ]  )N( E j )  = CNE(q, q ’ 1. (4.7) 

Given (4.3) and (4.5) with (4.6) as a backbone the picture can be refined in several 
directions. One may investigate the distribution of particles in the neighbourhood of 
the macroscopic point q E A i  and should find the Gibbs measure with density ps(q) .  
Instead of the density field one could consider fields of the form I ; , ~ ( E x ) T , ~  with h a 
local function. In the limit E + 0 their deterministic value and their fluctuations should 
become functionals of the density. 
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If one wants to include the time-dependence, then one has to speed up time as 
C 2 t  and defines 

in the stationary measure ( ) N ( E ) .  ('(f, t )  should converge as E + 0 to the stationary 
Gaussian process with covariance (3.14). 

Unfortunately, we have no mathematical technique at present to prove even the 
simplest conjecture, in general. However, we will show in 9 5 that there is at least 
one model, namely the simple exclusion model, for which the hydrodynamic limit can 
be established rigorously. This model is non-trivial in the sense that C N E ( q , q ' )  # 0. 
For non-interacting particle models C N E ( q ,  4') = 0 always. 

5. The simple exclusion model 

In this section we consider the special case ,8 = 0 and c(x, y, 7) = 1 for Ix - y l =  1, 
c(x, y, 7) = 0 otherwise. Then we can rewrite the generator (2.16) directly in terms 
of the boundary densities as 

( L f ) ( T )  =$  c ( f ( 7 x Y ) - f ( 7 ) )  
x,yc  .\,v,lx--YI=l 

+ c [ P - ( l - 7 , ) + ( l - p - ) 7 x l ( f ( 7 ~ ) - f ( 7 ) )  
X E  .\v.xj=-N 

+ c [P+ ( 1 - 7 x 1  + ( 1 - P+)  7 x  I( f( 7 "1 - f(  7)). (5.1) 

The simplicity of this particular lattice gas at infinite temperature stems from the 
fact that the BBGKY-hierarchy decouples: the nth correlation function satisfies a closed 
equation by itself. At finite temperatures the nth correlation function is coupled to 
higher-order correlation functions which makes an analysis much harder. We want to 
exploit this simplicity here in order to investigate the steady state pair correlation 
function in some detail. In particular we will prove the validity of the macroscopic 
theory. 

The argument given in Galves et a1 (1981) extends to arbitrary dimensions and 
proves that there is a unique stationary probability measure ( ) N ,  i.e. a unique state 
satisfying 

xt,.\h.,xI=N 

( L f ) N = O  ( 5 . 2 )  
for all local functions f. If p- = p = p+, then in the state ( ) N  the 7, are independent 
and 77, = 1 with probability p. 

We note that x ( p )  and D ( p )  as defined in (2.10) and (2.11) are given by 

X ( P )  = P(1 - p )  (5.3) 

D ( P )  = 1, (5.4) 

and 

since j ( x ,  x + e )  = 7, - 7x+e which implies that Z x ( j ( x ,  x + e )  e"'j(0, e ' ) ) p  = 0 in global 
equilibrium. 
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5.1. Covariance of the steady state 

To simplify notation we abbreviate x 2 , .  . . , xd = xll and write x = ( x l ,  X I , ) .  For the first 
correlation function one obtains 

with the boundary conditions (77(-N-1.x 
lattice Laplacian, 

= P -  and ( ~ ) ( v + I , ~  , ) N  = P + .  Here A 1s the 

(5.6) 

The solution of ( 5 . 5 )  is well known and given by 

( 7 7 , ) N  =[1/(2N+2)1Ep-(N+ 1 - 11) +P+(N+ 1 + X d l .  (5.7) 

C N ( X ,  Y) '(77X77,)N - - ( 7 7 x ) N ( 7 7 y ) N ,  ( 5 . 8 )  

C . V ( X , X )  =(77x)N(1-(77x)N). (5.9) 

The covariance is defined by 

x, y E AN. At coinciding arguments 

From now on we assume x # y.  

c N ( x ,  y )  
We insert in (5.2) f ( 7 )  = ~ ~ 7 7 ~ .  In the resulting equation we substitute ( q , ~ ~ ) ~  = 

Using the explicit average density (5.7) we obtain 

(%(X I ,  y )  - C N ( 4  Y ) )  + c ( C N ( X ,  y ' ) - c N ( x ,  y ) )  
y'E.\,v,Iy'-yI= l , Y ' #  x 

c 
X ' E . \ y , ~ X ' - x ~ =  1 , X ' #  y 

(5.10) 

(5.10) has a useful probabilistic interpretation. Let x ( t ) ,  y ( t )  be two random walks 
on AN U {xl = -N - 1) U { x l  = N + 1). They jump with rate one to  either one of the 
nearest-neighbour lattice sites provided this site is not occupied by the other random 
walk. x (  t )  and y (  t )  are absorbed whenever they hit the boundary planes {x, = -N - 1) 
and {xl = N+ 1). EN,ix,y) refers to expectation with respect to these two excluding 
random walks given that initially x ( 0 )  = x ,  y ( 0 )  = y. Let AN b'e the generator of the 
Markov jump process x ( t ) ,  y ( t )  and let g N ( x ,  y )  = (Sx,,yl+l + S x , + l . y , ) S x  . y .  Then 

(5.11) ( A N C N  ) ( X ,  Y 1 = [( P+ - P - ) /  (2N + 2) I ' g~  ( X, y ) .  

Because of the absorbing (Dirichlet) boundary conditions AN is invertible and 

C N ( X ,  Y )  = [ ( P + - P - ) / ( 2 N + 2 ) l 2 ( A , ' g , ) ( x ,  y ) .  (5.12) 

Lemma 5.1. Let A G ' ( x ,  y ;  x ' ,  y')  be the kernel of AN1. Then 

- A N ' ( x ,  y ;  x', y ' )  = E N , ( x , Y )  (time which x ( t ) ,  y ( t )  spendat x ' ,  y ' ) ,  (5.13) 

Proof. The time spent at x ' ,  y' equals 

d t  S x ( r ) , x , S y i r ) , y . .  (5.14) 
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Taking expectations and interchanging the order of integration yields 

I-@= 

dt  eA,\,'(x, y;  x' ,  y') = -A&'(x,  y; x',  y ') .  
= loX (5.15) 

g,v is the indicator function of the set rN = {x, y E ANlxl - y l J  = 1, xll = y,,}. Therefore 
lemma 5.1 together with (5.12) gives for the covariance 

cN(x, Y ) = [ ( P + - ~ - ) / ( ~ N + ~ ) ] ~ E , , , , ,  (time which x( t ) ,  y ( t )  spend in rN). (5.16) 

In other words, up  to a prefactor, c N ( x ,  y) is the average time the two excluding 
random walks stay next to each other in the one-direction given that they started at  x, y. 

Equation (5.16) implies two simple facts. 

Proposition 5.2. Particles a re  negatively correlated, 

Proposition 5.3. - ( 2 N  + 2)2cN(x, y) increases monotonically as N + 00. 

Proof. For M > N, r.M = rN  and the time spent in rN increases because A M  3 AN.  

If we think of x ( t ) ,  y ( t )  as a 2d-dimensional random walk, then we have to  know 
the average time it spends in a certain d-dimensional hyperplane. It follows that the 
average time spent in rN increases as N in one dimension, increases as log N in two 
dimensions and stays finite for three and more dimensions as N +. 00. The order of 
magnitude of the correlations is then 

cdx ,  y )  = - (p+-p- I21/N d = l  

-(p+-p-)2(log N ) / N 2  d = 2  

- ( P +  - p-)21/N2 d 2 3 .  (5.18) 

We  emphasise that these correlations are entirely due  to  the imposed boundary 
conditions. The trivial equilibrium correlations of the system are contained in (5.9). 

In one  dimension, by luck, a closed expression can be obtained. O n e  has for x < y 

c,w(x,  Y )  = [ ( p + - P - ) / ( 2 N + 2 ) 1 2 ( A i y ) - ' ( x ,  Y - 1 1 ,  (5.19) 

where A h  is the lattice Laplacian in the interval [-N, N - 11 with Dirichlet boundary 
conditions and (Aiy)-'(x, y )  refers to the kernel of its inverse. As is well known the 
kernel of the inverse Laplacian increases as N in one  dimension. 

In higher dimensions the expression (5.16) for cN is somewhat indirect and we 
could not find a simple closed form for cN. To find out its dependence on x and y we 
follow three different roads. For d 2 3 if N + 00, then cN -+ 0 as 1 / N 2 .  One  possibility 
is then to take out the trivial prefactor 1 / ( 2 N + 2 ) 2  and to study the limit N+oo of 
the remainder. This gives a reasonable approximation for c d x ,  y) with lxll, (y,l and 
lx - yI small compared to N. This approach is pursued in 9 5.2. In 9 5.3 we obtain 



Long range correlations in a steady state 4287 

upper and lower bounds on cN in terms of non-interacting random walks, i.e. in terms 
of A N  which can be diagonalised explicitly. In § 5.5 we investigate the hydrodynamic 
limit. 

5.2. The infinite volume limit at fixed lattice constant 

We take out the trivial prefactor from cN by defining 

Y )  = [(2N+2)/(p+-p-)I2c,(x, Y )  (5.20) 

and want to investigate the limit of & ( x ,  y)  as N + w .  

of the 1-axis and let A l i = A - A l .  We Fourier transform as 
Let A be the lattice Laplacian on Zd,  let A I  be the lattice Laplacian in the direction 

with k = ( k l ,  . . , , k d )  = ( kI, kli) E [-T, 7rId, Then A transforms to multiplication by 
E (  k) = Z$, 2 (cos k, - 1). To abbreviate, we set ~ ( k , )  =  C COS k, - 1) and E (  kll) = 
E ( k )  - 4 k l ) .  

Proposition 5.4. For d 3 3 let 

C(X, y )  = A - ' ( x ,  ~ ) - [ ( d - l ) / ( ~ d ~ ] ( A i i A - ' ) ( ~ ,  ~ ) + [ ( d - l ) ~ / ~ ~ d * ] ( A l h - ' ) ( ~ ,  y )  (5.21) 

with 

(Y = - ( 2 ~ ) - ~  dkE(k,)E(k,l)E(k)-'. I 
T h e n f o r d 3 3 a n d x Z y  

lim Edx,  y )  = c(x, y).  
N-a 

(5.22) 

(5.23) 

Proof. Weset I E ~ , y , ( . ) = I E N = , , , , , , l ( . )  and ~ = ~ , = { x , y ~ Z d / ~ x 1 - y 1 ( = 1 , x I ~ = y i i } .  By 
monotonicity the limit (5.23) equals 

(5.24) 

Since (x (  t ) ,  y ( t ) )  is a 2d-  dimensional random walk and l- is a d-  dimensional hyperplane, 
d 3 3, the expectation is finite. Let A be the generator of the random walk x ( t ) ,  y( t ) .  
Then 

c(x, y )  = - E ( x , y )  (time which x ( t ) ,  y ( t )  spend in r). 

c ( x , y ) =  2 [ A - ' ( x , y ; w , O , w + l , O ) + A - ' ( x , y ; w + l , O , ~ , O ) ] ,  
W C Z  

(5.25) 

where A-'(x, y ;  x ' ,  y')  refers to the kernel of A-'. The set of functions on Z d  X Z d  of 
the form g ( x ,  y) = f ( x  - y )  are invariant under A. Since in (5.25) A-' acts on a function 
of that form, we only have to know the action of A on this invariant subspace. In 
Fourier space, with the convention f ( 0 )  = 0, one obtains 

(5.26) 



4288 H Spohn 

Let c(x, y) = ( 2 ~ ) - ~  j d k  exp[ik(x-y)]c*(k). Then 

(5.27) 1 d 

] = 1  
2 ~ ( k ) c ^ ( k ) +  a ( k , ) ( 2 ~ ) - ~  dk&(k,)c*(k)=2cos kl ,  

5 dkc*(k)=O. 

The solution of (5.27) is given by 

c*( k)  = (2a( k))-’(2+ a a (  kll) + ba( k,))  (5.28) 

with 

2dp = (d  - l ) ~  + b, 2( d - 1 ) /  d a  = a - b, (5.29) 

where p = - ( 2 ~ ) - ~  5 dk E (  k)-’. Solving (5.29) for a and b, inserting in (5.28) and using 
the fact that c*( k) and c^( k) +constant give identical Fourier transforms for x f y yields 
then (5.21). 

5.3. Upper and lower bounds 

To understand the qualitative behaviour of the correlations cN for finite N we derive 
upper and lower bounds. They consist in throwing away the interaction in AN through 
replacing it by A; = Ag)+Ag),  i.e. by replacing the two excluding random walks in 
(5.6) by two independent ones. 

We have 

This corresponds to the convention that if x(0) = y(O),  then with rate one each one 
of the two random walks jump to a neighbouring lattice site. Once x(t)  # y ( t ) ,  this 
will persist for all times. The generator of the independent random walks is defined by 

Then by standard perturbation series 

By direct computation 
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Propositions 5 .2  and 5 .3  imply then the bounds 

2SI.-y;,lc(x, Y )  [ ( A N  -&&I(x, Y )  s -q -y l , l ( c (x ,  x) + C ( Y ,  Y ) ) ,  (5.34) 

where c (x ,  y )  =limN+= & ( x ,  y )  with EN defined by (5.32).  For x f y c(x, y )  is given 
by (5.21). For coinciding arguments we use definition ( 5 . 3 2 )  to obtain 

c( x, x )  = - 

In fact, there are cancellations between the positive and negative terms in (5.33) which 
could be used to obtain sharper bounds. Inserting (5.34) in (5.33) results in 

[ ( l / A O , ) ( g ~ - g - ) l ( x ,  Y ) <  E N ( x ,  ~ ) s [ ( l / A O , ) ( g ~ - - g + ) l ( ~ ,  y )  (5.36) 

with g - ( x ,  y )  = 281x-yl, lc(x,  y)  and g + ( x ,  y )  = -2S1x-yi,1c(x, x ) .  The bounds (5 .36)  differ 
only in amplitude. 

To  analyse (5.36) further one can use the eigenfunction expansion of A N  with 
Dirichlet boundary conditions. We refrain from doing so, since (5.36) establishes 
already the desired qualitative properties. At small distances, I x , ~ ,  1 ~ ~ 1 ,  Ix- y /  < N, 
E N ( x ,  y )  behaves as A-'(& y ) ,  i.e. as the Coulomb potential on the lattice, and at large 
distances, Ix- y l >  N, (5.36) implies the bound 

(5.35) l d  
4d  , = I  

{ c ( x  + e,, x) + c(  x - e,, x )  + c( x ,  x + e,)  + c(  x, x - e , ) } .  

IEN(x, y)lSconstant exp(-Ix-y1/2N). (5.37) 

5.4. Time-dependent correlations 

To obtain the correlations in time one only has to compute 

(d/'dO(vx,rvy,dN = ((L7x)rqy)N (5 .38)  

in the steady state. Since Lvx = ANq, one finds that in the steady state 

( 77x,1vy,O)N - ( 77, ) N  ( V y ) N  = (eS,+,v ) ( x, Y 1. (5.39) 

In particular the structure factor has the usual diffusive behaviour, up to boundary 
conditions. The interesting effects are contained in the static correlations c N ( x ,  y ) .  

5.5. Hydrodynamic limit 

We follow the pattern of § 4. From the explicit solution 

= ( 1 / 2 L ) [ P + ( L + q J  + P - ( L - q l ) l  (5 .40)  

The correlations (5.9) at coinciding points yield in the limit E + 0 the local equili- 
for every point 4 inside the slab AL = {q11q,/ < L}. 

brium contribution S(4 - 4' )ps(4)(  1 - ~ ~ ( 4 ) ) .  At non-coinciding points we have: 

Proposition 5.5. For q # q' E A: 

lim E - ~ C ~ , - ~ ~ ~ ( [ E - ' ~ ] ,  [ ~ - ' q ' ] )  =[(p+-p-)/2LlZA-'(q, 4 ' )  (5 .41 )  
where A-'(q, 4 ' )  is the kernel of the inverse Laplacian with zero boundary conditions. 
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Proof. We use the perturbation expansion (5.32). Since for q Z q '  
lim.,o [ , - : L I ( [ E - ' ~ ] ,  [~ - ' q ' ] )  = A-'(q, q ' )  as can be seen from the eigenfunction 
expansion for AN, we have 

& 2 - d  A-]  

(5.42) 

For the second term we use Lebesgue dominated convergence to obtain 

I d 

x lim [&(x  + ei, X)  + tN (x, x + e, j - EN (x, x) - E N ( x  + e,, x + e,)]  . 
N - x  , = I  

(5.43) 
i 

According to (5.35) the term in the curly brackets vanishes as N + CO. 

In the hydrodynamic limit the static correlations are then given by 

CJq, q ' )  = S ( q  - q ' ) p s ( q ) ( l  -ps (q ) )  +[b+-p-)/2LI2Ah-'(q, 4 ' ) .  

vLE - l q j , f  - ~ r v ~ , - ' q ' ] , , ~  )Le-lLl  - ( v [ , - : q ] ) [ F - ~ L ] (  v r E - l q l  )rE-1L1 1 = (eArCJ(q, 4 ' ) .  

(5.44) 

The time correlations are in the hydrodynamic limit 

lim 
P - 0  

(5.45) 

This follows from (5.39) together with the fact that a simple random walk converges 
in our scaling to Brownian motion. 

We conclude that in the hydrodynamic limit the covariance of the fluctuation field 
coincides with the one obtained from fluctuating hydrodynamics. The latter theory 
also asserts that the fluctuations are Gaussian. For the simple exclusion model this 
can also be proved in the sense that the fluctuation field (defined in (4.8)) tends to 
the Gaussian field with covariance (5.45) as E + 0. The mathematical techniques used 
in this proof are substantially more sophisticated compared to what we employed so 
far. Therefore we refrain from entering into details. The interested reader is referred 
to Galves et a1 (1983) where the Gaussian character of the time-dependent density 
fluctuations in a non-stationary situation is proved. The same technique can be made 
to work in the present case. 

6. Conclusions 

There is very little known about non-equilibrium steady states defined microscopi- 
cally. Even if we leave the 'safe' ground of conservative (Hamiltonian) systems and, 
in order to simplify the problem, allow a stochastic dynamics, retaining however the 
original property of dealing with many interacting particles, our knowledge is very 
modest. The (to my knowledge) only detailed example is the steady state of the laser 
in a mean field type description, cf Graham (1978) for a very clear review. The aim 
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of the present paper is to add and to investigate another non-trivial example of a 
non-equilibrium steady state of a stochastic many particle system. The long range 
static correlations found here can be predicted already on the basis of fluctuating 
hydrodynamics, but it is still gratifying to see them turn up in a microscopic model. 
These long range correlations are caused dynamically. In essence, they originate from 
(i) the local conservation of mass and (ii) some interaction between particles. 

It seems of interest to us to investigate our problem on the level of fluctuating 
hydrodynamics at a temperature below the critical temperature with one boundary 
density in the gas phase and the other in the fluid phase. There should be a link to 
the hydrodynamic theory of equilibrium interface fluctuations. 
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